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An uncertainty quantification scheme is developed for the simulation of stochastic
thermofluid processes. The scheme relies on spectral representation of uncertainty
using the polynomial chaos (PC) system. The solver combines a Galerkin procedure
for the determination of PC coefficients with a projection method for efficiently sim-
ulating the resulting system of coupled transport equations. Implementation of the
numerical scheme is illustrated through simulations of natural convection in a 2D
square cavity with stochastic temperature distribution at the cold wall. The properties
of the uncertainty representation scheme are analyzed, and the predictions are con-
trasted with results obtained using a Monte Carlo approach. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Uncertainty propagation and quantification can be an essential step in the development
of complex models, in particular when these models involve inexact knowledge of sys-
tem forcing or system parameters. This article is part of an effort that aims at developing
uncertainty quantification schemes for fluid systems involving transport and chemistry.

As an initial step toward these objectives, a stochastic projection method (SPM) was devel-
oped in a previous work [1]. In [1] attention was focused on an incompressible flow model,
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where uncertain model data are generated by a single random variable. SPM combines a
projection method for fluid flow with a spectral representation of the effect of uncertainty
in terms of the polynomial chaos (PC) system [2–9]. The objectives of the present effort
are twofold: (1) to extend the capabilities of SPM to situations involving random processes,
and (2) to generalize the underlying formulation so as to account for weak compressibility
effects. To illustrate the development, we focus on natural convection in an enclosed cavity.
This topic has received considerable attention in the recent literature and various approaches
have been proposed, including models based on the well-known Boussinesq approximation
(e.g., [10–12]) as well as low-Mach-number models (e.g., [13, 14]). In addition, simulations
of internal natural convection have been used as benchmark tests for different flow regimes
[10, 15–27].

In one of its simplest forms, the problem consists of a square or rectangular cavity with
adiabatic horizontal boundaries and differentially but uniformly heated vertical walls. In
practice, however, this idealized situation may be difficult to achieve, for instance due to
imperfections in insulation and/or nonuniform heating and cooling. Computed solutions
are often very sensitive to applied boundary conditions, which can complicate comparison
with experimental measurements [28].

The present effort aims at generalizing the previous construction [1] along two direc-
tions, namely, by considering flows with (small) temperature and density gradients and by
considering uncertain model data associated with a random process. Motivated in part by
the aforementioned observations, we focus on the idealized case of natural convection in a
square cavity under stochastic boundary conditions. As outlined in Section 2, we restrict the
study to natural convection in the Boussinesq limit. A stochastic formulation is then intro-
duced in Section 3 which consists of treating the hot wall as having a uniform temperature
and imposing a stochastic temperature distribution on the cold vertical boundary. The latter
is treated as a Gaussian process characterized by its variance and correlation length. The
Karhunen–Loève expansion [29] is then applied to construct an efficient representation of
this process and to generalize the PC representation used in the previous version of SPM
[1]. A brief validation study of the deterministic prediction is first performed in Section 5
and is used to select an appropriate grid resolution level. The convergence properties of
the spectral stochastic scheme are then analyzed in Section 6, and the properties of the
computed velocity and temperature modes are examined in Section 7. To verify the spectral
computations, a nonintrusive spectral projection (NISP) approach is introduced and applied
in Section 8. The essential idea in NISP is to use deterministic predictions to determine the
stochastic response of the system. Two variants are considered, one based on high-order
Gauss–Hermite (GH) quadrature [30, 31] and the other on Latin hypercube sampling (LHS)
strategy [32]. The predictions of both sampling schemes are contrasted with the spectral
computations and are used to further examine its properties. In Section 9, a quantitative
analysis of the effects of the imposed stochastic temperature profile is provided. Major
conclusions are summarized in Section 10.

2. DETERMINISTIC FORMULATION

We consider a square 2D cavity, of side Le, filled with a Newtonian fluid of density
ρ, molecular viscosity µ, and thermal conductivity κ . The coordinate system is chosen
so that y is the vertical direction, pointing upward, and the x axis is horizontal. The two
horizontal walls are assumed to be adiabatic. The left vertical wall is maintained at uniform
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temperature Th, and the right vertical wall is maintained at Tc. We assume that Th > Tc, so
that the left vertical wall (located at x = 0) is referred to as the hot wall, while the right
vertical wall is the cold wall.

In the Boussinesq limit, 2(Th − Tc)/(Th + Tc) � 1, the normalized governing equations
are expressed as [12]

∂u
∂t

+ u · ∇u = −∇p + Pr√
Ra

∇2u + Pr θ ey, (1)

∇ · u = 0, (2)

∂θ

∂t
+ ∇ · (u θ) = 1√

Ra
∇2θ, (3)

where u is the velocity, t is time, p is pressure, ey is the unit vector in the vertical y direction,
and θ ≡ (T − Tref)/�Tref is the normalized temperature. The reference temperature Tref ≡
(Th + Tc)/2 and the reference temperature difference �Tref ≡ Th − Tc. Unless otherwise
noted, variables are normalized with respect to the appropriate combination of reference
length Le, velocity V , time τ ≡ Le/V , and pressure P = ρV 2. The normalization leads to
the usual definitions of Prandtl and Rayleigh numbers, respectively Pr = µcp/κ and Ra =
ρgβ�TrefL3

e/(µκ), where β is the coefficient of thermal expansion and g is gravitational
acceleration. In all cases, the deterministic system is integrated from an initial state of rest
using Pr = 0.71 and Ra = 106. For this choice of physical parameters, a steady, laminar
recirculating flow regime occurs [12].

3. STOCHASTIC FORMULATION

We consider the effect of “random” fluctuations on the cold wall. The normalized mean
wall temperature at x = 1 is expressed as

θ1(y) ≡ θ(x = 1, y) = θc + θ ′(y) = −1

2
+ θ ′(y). (4)

Using angle brackets to denote expectations, we have 〈θ1〉 = θc; i.e., θ ′ has vanishing
expectation and the mean (dimensional) temperature along the cold wall is independent of
y and equals Tc.

The random component is assumed to be given by a Gaussian process which is charac-
terized by its variance σ 2

θ and an autocorrelation function K given by

K(y1, y2) ≡ K(|y1 − y2|) ≡ 〈θ ′(y1)θ
′(y2)〉 = σ 2

θ exp[−|y1 − y2|/Lc], (5)

where Lc is the normalized correlation length.K can be expanded in terms of its eigenvalues,
λi , and eigenfunctions, fi (y), using [9, 33, 34]

K(y1, y2) =
∞∑

i=0

λi fi (y1) fi (y2), (6)

and θ ′ can be accordingly expressed in the usual Karhunen–Loève (KL) expansion as [29]

θ ′(y) =
∞∑

i=0

√
λi fi (y)ξi , (7)



12 LE MAÎTRE ET AL.

where the ξi ’s are uncorrelated Gaussian variables having vanishing expectation and unit
variance.

The eigenvalues and eigenfunctions of K are solutions of the corresponding integral
operator [9, 33, 34], ∫ 1

0
K(y1, y2) f (y2) dy2 = λ f (y1). (8)

This Fredholm equation can be solved numerically, but an analytical solution for the kernel
in Eq. (5) is available [9] and is given by

fn(y) =




cos[ωn(y − 1/2)]√
1
2 + sin(ωn)

2ωn

if n is even,

sin[ωn(y − 1/2)]√
1
2 − sin(ωn)

2ωn

if n is odd,

(9)

where

λn = σ 2
θ

2Lc

1 + (ωn Lc)2
, (10)

and ωn are the positive (ordered) roots of the characteristic equation

[1 − Lcω tan(ω/2)][Lcω + tan(ω/2)] = 0. (11)

Since the first positive root of Eq. (11) is ω0 = 0, corresponding to f0 = 0, Eq. (7) may be
rewritten as

θ ′(y) =
∞∑

i=1

ξi

√
λi fi (y). (12)

Figure 1 depicts the first 10 eigenvalues and eigenfunctions for a process with Lc = 1.
Note that as the index increases, the eigenfunctions exhibit higher frequencies while the
corresponding eigenvalues decrease. As discussed in [9] the decay rate of the spectrum
increases with decreasing Lc.
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FIG. 1. Karhunen–Loève expansion for the temperature fluctuation θ ′(y) corresponding to an exponential
correlation function with characteristic length Lc = 1. In the left plot, the first ten mode shapes (

√
λi fi (y)) are

reported. The right plot shows the eigenvalues λi . The quantities have been respectively normalized using σθ

and σ 2
θ .
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TABLE I

E2
σ and E∞

σ for Various Values of NKL for Lc = 1/2, 1, and 2

NKL

4 6 10 20 40

E2
σ (NKL) − Lc = 1/2 0.5882E−1 0.3751E−1 0.2161E−1 0.1045E−1 0.5129E−2

E2
σ (NKL) − Lc = 1 0.2947E−1 0.1871E−1 0.1077E−1 0.5213E−2 0.2562E−2

E2
σ (NKL) − Lc = 2 0.1473E−1 0.9337E−2 0.5376E−2 0.2604E−2 0.1280E−2

E∞
σ (NKL) − Lc = 1/2 0.1076E−0 0.6592E−1 0.3453E−1 0.1300E−1 0.5590E−2

E∞
σ (NKL) − Lc = 1 0.5346E−1 0.3255E−1 0.1704E−1 0.6429E−2 0.2792E−2

E∞
σ (NKL) − Lc = 2 0.2657E−1 0.1615E−1 0.8456E−2 0.3197E−2 0.1395E−2

In numerical implementations, the KL expansion [Eq. (12)] is truncated, and the temper-
ature “fluctuation” is approximated as

θ ′ =
NKL∑
i=1

ξi

√
λi fi (y), (13)

where NKL is the number of modes retained in the computations. The error introduced by
this truncation is quantified in terms of the L p norms:

E p
K(NKL) =

[ ∫ 1

0

∫ 1

0

∣∣∣∣∣K(y1, y2) −
NKL∑
i=1

λi fi (y1) f1(y2)

∣∣∣∣∣
p

dy1 dy2

]1/p

, (14)

E p
σ (NKL) =


∫ 1

0

∣∣∣∣∣σθ −
√√√√ NKL∑

i=1

λi f 2
i (y)

∣∣∣∣∣
p

dy




1/p

. (15)

Table I reports E2
σ and E∞

σ for different values of NKL and for Lc = 1/2, 1, and 2; Table II
provides the corresponding values of E2

K and E∞
K . The results indicate that at fixed NKL

the “truncation” errors scale approximately as 1/Lc. At fixed correlation length, E2
σ and

E∞
K decrease as N 1

KL, while E∞
σ and E2

K exhibit faster decay rates. The effect of truncation
of K is further illustrated in Fig. 2, which depicts the truncated correlation function and
its deviation from the exact solution for Lc = 1. The results indicate that the truncation
error is mainly concentrated in a thin band around the axis y1 = y2 and that it exhibits rapid

TABLE II

E2
K and E∞

K for Various Values of NKL for Lc = 1/2, 1, and 2

NKL

4 6 10 20 40

E2
K(NKL) − Lc = 1/2 0.3366E−1 0.1791E−1 0.8176E−2 0.2988E−2 0.1249E−2

E2
K(NKL) − Lc = 1 0.1736E−1 0.9076E−2 0.4107E−2 0.1496E−2 0.6247E−3

E2
K(NKL) − Lc = 2 0.8789E−2 0.4562E−2 0.2057E−2 0.7882E−3 0.3124E−3

E∞
K (NKL) − Lc = 1/2 0.2188E−0 0.1439E−0 0.8462E−1 0.4149E−1 0.2051E−1

E∞
K (NKL) − Lc = 1 0.1127E−0 0.7285E−1 0.4250E−1 0.2076E−1 0.1026E−1

E∞
K (NKL) − Lc = 2 0.5699E−1 0.3660E−1 0.2128E−1 0.1039E−1 0.5130E−2
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FIG. 2. Truncated correlation function K(y1, y2) (left) and its deviation from the exact value (right). An
exponential autocorrelation function is used with Lc = 1. The truncation is at NKL = 6.

oscillatory decay as one moves away from the axis. It thus appears that the truncation, which
removes the highest frequency modes, primarily affects the short-scale correlations. The
truncated modes are expected to have a weak influence on the solution and this is in fact
reflected in the analysis that follows, which indicates that a modest number of KL modes
is generally sufficient.

4. SPECTRAL STOCHASTIC REPRESENTATION

As in [1], the dependence of the solution on the uncertain model data is represented in
terms of the PC system. We illustrate this representation for generic field variable, �(x, t, ξ),
where ξ = ξ1, . . . , ξNKL .� is decomposed according to

�(x, t, ξ) =
P∑

i=0

�i (x, t)�i (ξ), (16)

where �i are (yet to be determined) deterministic “coefficients,” �i denote the polynomial
chaos [2, 3, 29], while P + 1 is the total number of modes used in the spectral expan-
sion. Note that the �i are multidimensional orthogonal polynomials of the uncorrelated
Gaussians, and that for i = 1, . . . , NKL, �i (ξ) = ξi ; i.e., these NKL polynomials are linear
in the ξi . General expressions for �i , including higher order terms, can be found in [9].

We rely on Eq. (16) to form representations of the stochastic velocity, pressure, and
temperature distributions. Governing equations for the unknown expansion coefficients are
obtained by inserting the expansion into the governing equations and using a Galerkin
approach that takes advantage of the orthogonality of the polynomial chaoses [1, 9]. This
results in the coupled system

∂uk

∂t
+ (u · ∇u)k = −∇pk + Pr√

Ra
∇2uk + Pr θk ey, (17)

∇ · uk = 0, (18)

∂θk

∂t
+ ∇ · (uθ)k = 1√

Ra
∇2θk, (19)
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for k = 0, . . . , P . Here, uk(x, t), pk(x, t), and θk(x, t) are the coefficients in the PC expan-
sion of the normalized velocity, pressure, and temperature fields, respectively. The quadratic
velocity–velocity and velocity–temperature products are given by

(u · ∇u)k =
P∑

i=0

P∑
j=0

Ci jkui∇u j (20)

and

(uθ)k =
P∑

i=0

P∑
j=0

Ci jkuiθ j , (21)

where

Ci jk ≡ 〈�i� j�k〉〈
�2

k

〉 . (22)

Note that although Ci jk = 0 for 1 ≤ i, j, k ≤ NKL, it is generally nonvanishing, so that the
Galerkin procedure results in a coupled system for the velocity and temperature modes.
Note, however, that the velocity divergence constraints are decoupled, which enables us to
adapt the SPM developed in [1]. This approach is outlined in the following sections.

4.1. Boundary Conditions

Following [1], boundary conditions are treated in a “weak sense”; i.e., the Galerkin
approach is also applied at the boundaries. In particular, the PC decomposition is also
introduced into the corresponding expressions, and orthogonal projections are used to derive
boundary conditions for the velocity and temperature modes. For the setup outlined in
Section 3, we obtain

uk = 0, k = 0, . . . , P ∀x ∈ ∂�, (23)

∂θk

∂y
= 0, k = 0, . . . , P for y = 0 and y = 1, (24)

θ0(x = 0, y) = 1

2
, θ0(x = 1, y) = −1

2
, (25)

θk(x = 0, y) = 0, θk(x = 1, y) = √
λk fk(y) for k = 1, . . . , NKL, (26)

θk(x = 0, y) = θk(x = 1, y) = 0 for k > NKL. (27)

Here � = [0, 1] × [0, 1] denotes the computational domain, and ∂� is its boundary.

4.2. Solution Method

As mentioned earlier, the solution scheme is an adapted version of the SPM introduced
in [1]. Numerical integration of the governing equations of the stochastic mode follows an
explicit fractional step procedure that is based on first advancing the velocity and temperature
modes using

ũk = 4un
k − un−1

k

3
+ 2�t

3

[
−2(u · ∇u)n

k + (u · ∇u)n−1
k + Pr√

Ra
∇2un

k + Pr θn
k ey

]
, (28)

θn+1
k = 4θn

k − θn−1
k

3
+ 2�t

3

[
∇ · (−2(uθ)n

k + (uθ)n−1
k

) + 1√
Ra

∇2θn
k

]
, (29)
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where superscripts refer to the time level and �t is the time step. Note that since we are
primarily interested in the steady-state solution of this system, we have combined explicit
second-order time discretization of the convective terms and with first-order discretization
of the buoyancy and viscous terms. As in [1], spatial derivatives are approximated using
second-order centered differences. In the second fractional step, the “intermediate” velocity
modes ũk are updated so as to satisfy the divergence constraints [35, 36]; we use

un+1
k = ũk − 2�t

3
∇pn+1

k , (30)

where pk are solutions to the Poisson equations

∇2pn+1
k = 3

2�t
∇ · ũk (31)

with homogeneous Neumann conditions [35, 36]. Note that these elliptic systems for the
various modes are decoupled, a key feature in the efficiency of SPM [1].

In the implementations presented in the following, we relied on a conservative second-
order finite-difference discretization on a uniform Cartesian mesh with (Nx , Ny) cells in
the x and y directions respectively. A direct, Fourier-based, fast Poisson solver is used to
invert Eqs. (31). Since these inversions account for the bulk of the CPU times, and since
systems for individual modes are decoupled, the computational cost scales essentially as
O(N log N ), where N ≡ Nx × Ny × (P + 1). This estimate is in fact reflected in the tests
that follow.

5. DETERMINISTIC PREDICTION

We start with a brief discussion of deterministic predictions, obtained by setting the order
(NO) of the PC expansion to zero. In this case, the stochastic boundary conditions reduce to
those of the classical problem with uniform hot and cold wall temperatures, θh = 1/2 and
θc = −1/2. The resulting predictions are used to validate the computations and to select a

FIG. 3. Scaled temperature field (left) and velocity vectors (right) for the deterministic temperature boundary
conditions (θh = −θc = 1/2) computed using zero-order spectral expansion (NO = 0).
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suitable grid size. To this end, the results are compared with the spectral computations of
Le Quéré [12]. For Ra = 106, Le Quéré found a steady Nusselt number Nu = 8.8252, with
the Nusselt number defined by

Nu ≡ −
∫ 1

0

∂θ

∂x
dy. (32)

Following a systematic grid refinement study, we find that a computational grid with
Nx = 140 and Ny = 100 is sufficient for accurate predictions. Starting from an initial state
of rest, the computations are carried out until steady conditions are reached. Specifically,
the computations are stopped when the maximum change in any field quantity falls below a
tolerance ε = 10−10. (Double precision arithmetic is used.) For the current grid resolution,
the steady Nusselt number is found to be Nu = 8.8810, which is within 0.63% of the
prediction of Le Quéré. The structure of the steady field, depicted in Fig. 3, reveals thermal
boundary layers on the hot and cold walls and a clockwise circulation of the fluid; these
predictions are also in good agreement with the results reported in [12].

6. CONVERGENCE ANALYSIS

An analysis of the convergence of the spectral representation scheme is performed in this
section. Following the previous discussion, we are presently dealing with a two-parameter
discretization that involves the number NKL of Karhunen–Loève modes, as well as the order
NO of the PC expansion. As discussed in [9], the total number P of orthogonal polynomials
increases monotonically with NKL and NO [9].

6.1. Convergence of KL Expansion

In Section 3, we observed that the KL expansion converged rapidly and consequently
speculated that truncation of this expansion would have little effect on the predictions. We
now examine this expected trend by computing the mean Nusselt number,

Nu = −
∫ 1

0

∂θ0

∂x
dy, (33)

and its standard deviation,

σ(Nu) =
(

P∑
i=1

{[
−
∫ 1

0

∂θi

∂x
dy

]2

〈
i
i 〉
})1/2

, (34)

for NKL ranging from 2 to 10. For brevity, we restrict our attention to a first-order PC
expansion, and results are obtained with fixed Lc = 1 and σθ = 0.25.

The average of the local heat flux variance along the wall is given by

σ 2(∂θ/∂x) =
∫ 1

0

P∑
i=1

[
∂θi

∂x

]2

〈
i
i 〉 dy. (35)

and should be carefully distinguished from σ 2(Nu). At steady state, the net heat flux on the
hot wall equals that on the cold wall; since this relationship holds for arbitrary realization,
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TABLE III

Effect of NKL on Nu and σ(Nu) for NO = 1,

Lc = 1, and σθ = 0.25

NKL Nu σ(Nu) P

2 8.96344 2.47009 2
4 8.97114 2.46979 4
6 8.97179 2.46980 6
8 8.97190 2.46980 8

10 8.97192 2.46980 10

σ 2(Nu) has the same value on the hot wall as on the cold wall. On the other hand, σ 2(∂θ/∂x)

is expected to assume a higher value on the cold wall, where random fluctuations are
imposed, than on the hot wall, since these fluctuations are expected to be smoothed out by
diffusion.

Computed values of Nu and σ(Nu) are reported in Table III. As expected, the results show
that for the present conditions Nu and σ(Nu) converge rapidly with NKL. To further examine
the predictions, we plot in Fig. 4 the distribution of the normalized heat flux −∂θ/∂x along
the hot and cold walls as a function of P . (Note that for NO = 1, P = NKL.) Clearly, on the
hot wall, only modes 0 and 1 contribute significantly to the local heat flux; for the higher
modes, ∂θi/∂x is close to zero for all y. This situation contrasts with the distribution of the
heat fluxes on the cold wall, where significant heat flux fluctuations are observed for all the
PC modes. However, as noted earlier, the net heat fluxes across the hot and cold walls are
equal at steady state. Thus, when integrated along the boundary, the significant fluctuations
of the higher modes on the cold wall tend to cancel out. This explains the rapid convergence
of integral quantities in Table III.

The standard deviation of the local heat flux, shown in Fig. 5, closely reflects these
trends. In particular, by comparing points symmetrically across the midplane, the re-
sults clearly show that the values on the cold wall are generally larger than those on the
hot wall. Also note that the curve for the cold wall exhibits a noticeable waviness that
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FIG. 4. Local heat fluxes versus y on the hot (left) and cold (right) walls, for modes 0–10. A first-order
expansion is used with NKL = 10, Lc = 1, and σθ = 0.25.
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FIG. 5. Standard deviation of the local heat fluxes versus y on the hot and cold walls. A first-order expansion
is used with NKL = 10, Lc = 1, and σθ = 0.25.

corresponds to the imposed conditions, whereas the curve for the hot-wall distribution is
smooth.

6.2. Convergence of PC Expansion

In this section, we analyze the convergence of the PC expansion by contrasting results
obtained with NO = 1, 2, and 3. Results are obtaining with Lc = 1 and σθ = 0.25, using
both four and six KL modes.

Wall heat transfer. The computed values of Nu and σ(Nu) are reported in Table IV,
together with the number P of polynomials used. The results exhibit a fast convergence as
the order of the PC expansion, NO, increases. The differences in Nu and σ(Nu) between
second- and third-order solutions are less than 0.01% and 0.05%, respectively. The close
quantitative agreement between the results for NO = 2 and 3 indicates that, at least as far as
integral quantities are concerned, a second-order expansion is sufficiently accurate. This fast
convergence rate is also indicative of the smooth dependence of the solution with respect
to the imposed random temperature fluctuations.

Plotted in Fig. 6 are the heat flux distributions along the cold (top row) and hot (bottom
row) walls for NO = 1, 2, and 3. Results are obtained with NKL = 4 and curves are plotted

TABLE IV

Mean Nusselt Number and Its Standard Deviation for First-, Second-, and Third-Order

PC Expansion with NKL = 4 and 6 for Lc = 1 and σθ = 0.25

Nu σ(Nu) P

NO NKL = 4 NKL = 6 NKL = 4 NKL = 6 NKL = 4 NKL = 6

1 8.97114 8.97179 2.46979 2.46980 5 7
2 8.97289 8.97352 2.46323 2.46327 15 27
3 8.97337 8.97340 2.46239 2.46245 34 83
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FIG. 8. Contours of θ 0 − 〈θ NO 〉. Plots are generated for NO = 1, 2, and 3. Results are obtained with NKL = 4,
Lc = 1, and σθ = 0.25.

FIG. 9. Contour plots of 〈θ 1〉 − 〈θ 2〉 (left) and 〈θ 2〉 − 〈θ 3〉 (right). Results are obtained with NKL = 4, Lc = 1,
and σθ = 0.25.
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FIG. 10. Contours of standard deviation in temperature for NO = 1, 2, and 3. Results are obtained with
NKL = 4, Lc = 1, and σθ = 0.25.

FIG. 11. Differences in the temperature standard deviation computed using NO = 1, 2, and 3. In all cases,
NKL = 6, Lc = 1, and σθ = 0.25.
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FIG. 6. Local heat flux versus y on the cold (top row) and hot (bottom row) walls. Results are obtained with
NKL = 4, Lc = 1, and σθ = 0.25. Curves are plotted for every mode in the PC expansion. P = 4 for NO = 1,
P = 14 for NO = 2, and P = 34 for NO = 3.

for every mode in the PC expansion. The local heat flux profiles for the “first-order modes”
(index i ≤ 4) have shapes similar to those reported in Fig. 4: these modes have significant
amplitude on the cold wall, whereas modes higher than 2 are much less pronounced on the
hot wall. On both walls, the first-order modes are slightly influenced by the order of the PC
expansion. Whereas increasing NO introduces more modes in the expansion (P = 14 for
NO = 2 and P = 33 for NO = 3), the heat fluxes associated with these higher order modes
are very low. Consequently, the “correction” of the local heat fluxes, arising when NO is
increased, is weak whenever NO > 1. This fact is also shown in Fig. 7, where the local
heat-flux standard deviations are plotted for NO = 1, 2, and 3.

The present analysis of wall heat fluxes only shows how the solution converges, globally
or locally, on the vertical boundaries. To further investigate the behavior of the spectral

FIG. 7. Local standard deviation of the heat fluxes on the hot (left) and cold (right) walls, for NO = 1, 2,
and 3. Results are obtained with NKL = 4, Lc = 1, and σθ = 0.25.
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representation, we analyze the temperature and velocity fields within the cavity. We focus
our attention on the distributions of mean quantities and their standard deviations and
postpone to Section 7 the examination of individual mode structure.

Temperature field. We start by noting that, since the natural convection in the cavity
is not a linear process, the mean temperature distribution differs from the deterministic
prediction corresponding to the mean temperature boundary condition, θc = −1/2. This
deterministic prediction, corresponding to ξi = 0, i = 1, . . . , NKL, shall be denoted by θ0.
Meanwhile, we shall denote by 〈θ NO=1,2,3〉 ≡ θ0(NO) the mean predictions obtained using
first-, second-, and third-order PC expansions, respectively.

Examination of the mean temperature fields obtained with NO = 1, 2, and 3 (not shown)
reveals that these fields have features like those of θ0 (shown earlier in Fig. 3). Thus,
we have found it more convenient to analyze the difference fields θ0 − 〈θ NO≥1〉. These
difference fields are plotted in Fig. 8 for NKL = 4. A close agreement is observed between
the plots corresponding to the different expansion orders. Only a very weak dependence of
the local magnitudes on NO can be detected. Thus, increasing NO has only a weak effect
on the expected temperature field. To further demonstrate the convergence of the spectral
representation, the differences 〈θ NO=1〉 − 〈θ NO=2〉 and 〈θ NO=2〉 − 〈θ NO=3〉 are displayed in
Fig. 9. The results show that, at least as far as the mean field is concerned, the first-order
expansion captures most of the effects of uncertainty. The difference 〈θ NO=2〉 − 〈θ NO=3〉 is
very small, indicating that the truncated terms have a weak impact on the mean temperature.

Figure 8 also shows that the mean temperature along the cold wall is higher than that
of θ0. The opposite situation is reported along the hot wall, where the mean temperature
is lowered by the uncertainty. These changes are responsible for the improvement of the
global heat-transfer coefficient Nu. In addition, the mean temperature on the bottom of the
cavity is significantly lower than that of θ0; in the upper part of the cavity, the mean and
deterministic predictions are nearly equal. To explain these trends, one notes that the mean
clockwise flow circulation is not altered by the stochastic boundary conditions (as will be
shown later). So, on average, the fluid is traveling downward along the cold wall, where
it is affected by random temperature conditions. The random fluctuations are transported
across the cavity to the hot wall. As the fluid travels upward along the hot wall, uncertainty
is reduced due to diffusion, so that when reaching the upper part of the cavity, the fluid
temperature has lost most of its uncertainty, and its mean value is close to that of θ0. We
also observe that the deviation of the mean temperature field from θ0 exhibits a complex
structure, with alternating signs, in the lower right quadrant, where the deviation from θ0

peaks. This pattern is closely correlated with the uncertainties in the velocity fields, as will
be further discussed.

Additional insight into the role of stochastic boundary conditions can be gained from
Fig. 10, which depicts the temperature standard deviation fields for NO = 1, 2, and 3. The
results show that the standard deviation distribution has a structure similar to that of the
mean, with two layers parallel to the vertical walls and a horizontal stratified arrangement
from the bottom to the top of the cavity. The standard deviation vanishes on the hot wall,
where deterministic conditions are imposed, and reaches its maximum on the cold wall, with
values close to σθ . This spatial distribution is consistent with the arguments just presented
regarding the role of circulation in driving the uncertainty.

Finally, in Fig. 11, it is shown that the expansions for NO = 1, 2, and 3 provide essentially
the same estimate of the temperature standard deviation, with differences in the fourth
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FIG. 17. Scaled temperature fields θk for k = 0, . . . , 14. Results are obtained with NKL = 4, NO = 2, Lc = 1,
and σθ = 0.25.
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FIG. 19. Scaled temperature fields θk for NKL = 4, obtained using NISP/GH predictions with Nd = 81. Lc = 1,
and σθ = 0.25.
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FIG. 12. (a) Velocity map of the difference 〈uNO=3〉 − u0. (b) Profiles of mean horizontal velocity (〈uNO=3〉)
and mean vertical velocity (〈vNO=3〉). The profiles are independently scaled for clarity. The scaled length of
the bars corresponds to 6 times the local standard deviation. Results are obtained with NKL = 6, Lc = 1, and
σθ = 0.25.

significant digit. These results also demonstrate the fast convergence rate of the spectral
expansion and the fact that in the present case a first-order expansion captures most of the
standard deviation.

Velocity field. As was done for the temperature distribution, we start by examining
the deviation of the mean velocity field from u0, which denotes the deterministic solu-
tion corresponding to the mean temperature condition (θc = −1/2). The mean velocity
fields corresponding to first-, second-, and third-order PC expansions will be denoted by
〈uNO=1,2,3〉, respectively. For each case, we find that the deviation of the mean solution from
u0 is small, and we consequently focus on the differences 〈uNO≥1〉 − u0.
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FIG. 13. Velocity map of the difference 〈uNO=3〉 − 〈uNO=2〉. Results are obtained with NKL = 6, Lc = 1, and
σθ = 0.25.

Figure 12a shows the distribution of 〈uNO=3〉 − u0 for a simulation with NKL = 6, Lc = 1,
and σθ = 0.25. The difference field exhibits three complex structures that lie in the lower
part of the cavity. While these structures resemble the recirculating eddies of the mean
flow, it should be emphasized that the velocity magnitudes have been scaled by a factor
of 10 compared to those in Fig. 3. Thus, with respect to u0, the mean field is significantly
perturbed in the regions occupied by these structures, but it is not actually recirculating.
This can be verified by inspecting the mean solution itself, depicted in Fig. 12b, using
the profiles of mean horizontal and mean vertical velocity. The profiles show that the
mean flow is not recirculating but that flow “reversal,” hence recirculation, in the lower
right corner is likely to occur. In this region, one observes large standard deviations and
low mean velocities, especially outside the boundary layers; this is indicative of large
sensitivity to the stochastic boundary conditions. This trend is consistent with earlier ob-
servations regarding the deviations θ0 − 〈θ NO≥1〉, which exhibited maxima at these same
locations.

To verify that the behavior of the stochastic solution is well represented, and consequently
that the previously mentioned trends are not an artifact of the method, we inspect in Fig. 13
the distribution of 〈uNO=3〉 − 〈uNO=2〉. The velocity map is generated with a scaling factor
that is 10 times larger than that used in Fig. 12a. The results clearly demonstrate that there are
very small differences between the second- and third-order solutions and that both provide
accurate representations of the stochastic process.

Remarks. We close this section with two remarks regarding the ability of the spectral
representation to accurately reproduce individual events and regarding the CPU costs of the
spectral solution scheme.

Recall that the spectral representation relies on a weighted residual procedure to de-
termine the mode coefficients. This representation is the closest polynomial to the exact
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FIG. 14. Velocity map of the difference uNO=2(ξ = 0) − u0. Results are obtained with NKL = 6, Lc = 1, and
σθ = 0.25.

response “surface” in the corresponding L2 norm. Although optimal in this sense, the
PC representation does not guarantee that individual “realizations” are exactly interpo-
lated. However, our experiences indicate that when the PC representation is of sufficiently
high order, it can also be used to obtain highly accurate estimates of individual real-
izations. This quality is illustrated in Fig. 14, where we plot the difference between u0

and the second-order solution evaluated at ξ = 0, i.e., uNO=2(ξ = 0). The figure is gen-
erated with a scaling factor 10 times larger than that used for the deterministic solution
of Fig. 3, demonstrating that the agreement between u0 and uNO=2(ξ = 0) is indeed very
good.

Regarding the performace of the spectral computations, we had anticipated earlier that the
CPU cost would scale linearly with P , with near unity coefficient. As shown in Fig. 15, this
behavior is in fact observed, and, together the spectral behavior of the errors in the spectral
approximation, can be used to guide the selection of a suitable stochastic discretization level
that properly balances accuracy and CPU cost.

7. MODE BEHAVIOR

In this section, we examine individual velocity and temperature modes in PC expansion.
For brevity, we restrict our attention to spectral predictions obtained with NKL = 4, NO = 2,
Lc = 1, and σθ = 0.25. For this spectral resolution P = 14, giving a total of 15 modes. Thus,
we end up with a moderate number of velocity and temperature distributions, which are
analyzed in the following.

7.1. Velocity

Figure 16 provides vector maps for all the modes in the computations. Different scaling
factors are used to represent the various fields, as indicated in the labels. Note that the zeroth
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FIG. 15. CPU time needed to perform 100 time steps for PC expansions with different NO and NKL. A fixed
mesh size of 140 × 100 cells is used. Scaled CPU times are reported as a function of the largest polynomial
index P.

mode corresponds to the mean velocity field, which has been already studied in Section 6.2.
Thus, we shall focus on the higher modes.

The first-order velocity modes vk, k = 1, . . . , 4, follow mode 0 in the first column
of Fig. 16. They correspond to the polynomial 
k = ξk for k = 1, . . . , NKL = 4. Thus,
these modes reflect the linear response of the stochastic velocity field to the correspond-
ing Karhunen–Loève eigenfunctions appearing in Eq. (13) and plotted in Fig. 1. Note
that the first KL mode has a nearly uniform, positive value and that it exhibits a posi-
tive velocity along the cold wall and a negative velocity along the hot wall. This is not
surprising since, for ξ1 > 0, the first Karhunen–Loève mode tends to decrease the tem-
perature difference between the two walls. However, the structure of u1 is not similar to
that of u0. The two fields are governed by different dynamics, as shown in the Appendix,
where the governing equations are given for a first-order PC expansion. One observes
that the first mode is advected (and “stretched”) by the mean velocity (u0) and not by u1.
This observation, which also applies for u2, u3, and u4, remains true for a second-order
expansion.

In the neighborhood of the cold wall, all the first-order velocity modes clearly reflect the
shape of the corresponding Karhunen–Loève mode. For instance, for u2, the velocity points
upward on the highest part of the cold wall and downward in its lowest part, as the associated
temperature perturbation is respectively positive and negative (Fig. 1). For u1 and u2, the
velocity magnitudes are significant near all solid boundaries; on the other hand, for u3 and
u4, the velocity magnitudes are negligible on the hot wall. For the first-order modes, the
velocity magnitudes decrease with increasing mode index; note in particular that the scale
factor for u4 is twice that of u3. If a larger value for NKL is used, the additional first-order
velocity fields are weaker than those retained, being localized near the cold boundary (not
shown). This trend is consistent with our earlier discussion of the weakening effects of the
higher frequency, random fluctuations.

The second-order velocity fields uk, k = 5, . . . , 14, are plotted in the center and right
columns of Fig. 16; the same scaling factor is used for these modes, allowing straightforward
comparison. Note that this scaling factor is 80 times larger than that of u0 and 10 times
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FIG. 16. Velocity fields uk for k = 0, . . . , 14. Results are obtained with NKL = 4, NO = 2, Lc = 1, and
σθ = 0.25. Note that different velocity scales are used, as indicated in the labels.
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larger than that of u4. Thus, the magnitudes of the second-order velocity fields are much
smaller than those of zeroth- and first-order modes. This rapid decay also reflects the rapid
convergence of the PC expansion.

The second-order velocity modes have very different patterns, some being only significant
along the cold wall and others affecting the entire cavity. Some of these structures can be
easily interpreted. For example. u5, which corresponds to 
5 = ξ 2

1 − 1, has a structure
similar to that of u1. For other modes, the structure of the corresponding velocity fields are
quite complex and difficult to interpret. It is interesting to note, however, that the velocity
fields involving the second KL mode (u6, u9, u10, and u11) seem to have the most significant
magnitudes, suggesting that this mode has greater impact on the stochastic process than the
others. On the other hand, second-order polynomials associated with the fourth KL mode
appear to be very weak.

7.2. Temperature

Figure 17 shows contour plots of the temperature modes θk, k = 0, . . . , 14. Since the
mean temperature field θ0 has been analyzed earlier, we will focus on first- and second-
order modes.

The contours of the first mode, θ1, are similar to those of θ0, even though the corresponding
values differ. This is not surprising since these two modes obey similar boundary conditions,
with θ0 being subjected to a uniform Dirichlet condition on the cold wall, while θ1 is nearly
uniform there. However, some differences between the distributions of θ1 and θ0 can be
observed at the lower right corner of the cavity. These differences appear to be governed
by the circulation of the mean flow in the cavity. To appreciate this effect, we note that it
is the mean field u0 which contributes to the transport of θ1; the heat flux associated with
u1, which points upward near the cold wall, is dependent on the mean temperature field θ0

(see the Appendix). The role of the mean field in the transport of θ2, θ3, and θ4 can also be
appreciated from the corresponding contour plots. Note that θ2, θ3, and θ4 are very small
in the upper half of the cavity but have significant values in the lower part of the cavity
and/or in the vicinity of the cold wall. In particular, for θ3 and θ4 one observes fluctuations
of alternating sign that are localized near the cold boundary and that coincide with the shape
of the corresponding KL mode.

As for velocity, the second-order temperature modes are more difficult to interpret than
the first-order modes. The only structures that can be easily identified are the imposed cold-
wall distributions. The results indicate that significant mode coupling occurs, which can be
detected by inspecting the modes involving mixed products of the ξi ’s. For instance, for θ7 a
second-order coupling between ξ1 and ξ3 is involved; this mode exhibits three distinct zones
along the cold wall, which reflect the shape of the third mode in the KL expansion. Apart
from such identifiable features, the second-order modes can have complex distributions,
some of which are localized in the lower part of the cavity, while others extend throughout
the domain.

Regarding the amplitude of the second-order modes, we note those modes involv-
ing ξ2 and ξ3, i.e., the second and third KL eigenfunctions, are dominant. Thus, not all
second-order modes contribute equally to the stochastic process. In general, however, the
second-order temperature modes are at least one order of magnitude lower than the first-
order modes. This is consistent with earlier observations regarding the convergence of the
expansion.
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8. NONINTRUSIVE SPECTRAL PROJECTION

To verify the spectral computations of the previous section, a NISP approach is developed.
The starting point in NISP is the observation that the modes ui and Ti can be obtained by
projecting deterministic computations onto the PC basis. If ud(ξ) and T d(ξ) denote the
deterministic solution corresponding to a particular realization ξ = (ξ1, . . . , ξNKL ), then the
polynomial coefficients are, by definition, given by

(ui , Ti ) = 〈(u, T )d
i 〉
〈
i
i 〉 ≡

∫ ∞

−∞
dξ1 · · ·

∫ ∞

−∞
dξNKL

[
(u, T )d(ξ)


i (ξ)〈

2

i

〉 NKL∏
k=1

exp
(−ξ 2

k /2
)

√
2π

]
.

(36)

8.1. Gauss–Hermite Quadrature

For moderate values of NKL, our multidimensional integration can be efficiently per-
formed using Gauss–Hermite quadrature [30, 31]. Using n collocation points along each
“stochastic direction,” Eq. (36) can be approximated as

(ui , Ti ) =
n∑

n1=1

. . .

n∑
nNKL =1

(u, T )d
(
xn1 , . . . , xnNKL

)
i
(
xn1 , . . . , xnNKL

)
〈
i
i 〉

NKL∏
k=1

wnk , (37)

where (xk, wk), k = 1, . . . , n, denote the one-dimensional GH integration points and
weights. The quadrature in (37) is exact when the integrand is a polynomial of degree
of 2n − 1 or less. Thus, the coefficients can be exactly estimated if the process is spanned
by polynomials of degree less than or equal to (2n − 1)/2. In this situation, the number
of deterministic realizations Nd required in the NISP approach for given NKL and NO is
Nd = (2NO − 1)NKL . It should be emphasized that for arbitrary NKL and NO, Nd is always
greater than P, the number of polynomials in the spectral approach used here. Since the
CPU time in the spectral approach is approximately P times that of a deterministic solu-
tion, NISP is not as efficient as the spectral approach. Its main advantage, however, is that
it makes use of a deterministic solver without the need for any modifications and so is
“nonintrusive.”

NISP/GH computations are performed for a case with NKL = 4 and NO = 2. We use
n = 3 and so obtain Nd = 81 deterministic realizations for the corresponding GH quadrature
points. (In contrast, the intrusive spectral approach discussed previously has P = 14, for
a total of 15 modes.) Velocity and temperature modes obtained using NISP are plotted
in Figs. 18 and 19, respectively. The corresponding results obtained using the intrusive
spectral approach were given in Figs. 16 and 17 and have extensively discussed in the
previous section.

For the velocity fields, we find an excellent agreement between the intrusive spectral
results (Fig. 16) and the NISP predictions (Fig. 18) for the zeroth- and first-order modes.
For the second-order modes (uk, k = 5, . . . , 14), small deviations are observed between the
two sets, but the primary structure of the modes is quite similar. These small deviations are
pronounced for coupled modes involving ξ2 and ξ3; the deviations are substantially smaller
for the nonmixed quadratic modes. Despite these small deviations, the agreement between
the intrusive and NISP/GH predictions is very satisfactory.
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FIG. 18. Velocity fields uk for NKL = 4, obtained using NISP/GH predictions with Nd = 81. Note that different
scale factors apply on vector magnitudes. Lc = 1 and σθ = 0.25.
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Comparison of the temperature modes in Figs. 19 and 17 reveal trends similar to those
of the velocity modes. In particular, the zeroth- and first-order modes are in excellent
quantitative agreement, as can be appreciated by inspecting the maxima and minima reported
on individual frames. These values also provide a good illustration of the deviations observed
in the second-order modes. Again the largest differences are observed for modes involving
mixed products. The small magnitude of these differences, compared to the characteristic
values of the first-order terms, is evident and should be emphasized.

The origin of deviations between intrusive and NISP/GH predictions can be traced to
the errors inherent in both approaches. These primarily consist of spectral truncation errors
in the intrusive approach and aliasing errors in the NISP predictions. Obviously, complete
agreement between NISP and spectral computations can only be achieved in the case of a
finite spectrum. Since we are presently dealing with second-order spectral representations,
agreement would occur if the third- and higher order modes vanish identically, which is
clearly not the case: the third-order terms are very small, but not identically vanishing.

To further examine these differences, we rely on the L2 norms of the differences between
the same temperature modes in two different solutions, T (1) and T (2), defined according to

E2
ik ≡

[ ∫ ∫ (
T (1)

i − T (2)
k

)2
dx dy

]1/2

. (38)

The indices i and k are selected so that 
i in the PC expansion of T (1) referes to the same
polynomical 
k in the polynomial expansion for T (2). Obviously, i = k when T (1) and T (2)

have the same number of KL modes, NKL.
We have first compared modal solutions obtained with intrusive spectral computations

using the same order PC expansion but different number of KL modes. In this case, the error
measure is only relevant for the modes that are shared in both representations, namely, those
belonging to the expansion having lower NKL value. A sample of this exercise is shown
in Fig. 20, which shows the L2 norm between temperature modes obtained using second-
order expansions with NKL = 4 and 6. As is evident in the figure, the L2 errors between the
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FIG. 20. L2 norm of the difference in the common temperature modes obtained with intrusive spectral
calculations using NKL = 4 and NKL = 6. In both cases, a second-order PC expansion is used.
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FIG. 21. L2 norms of differences in temperature modes obtained with intrusive spectral predictions using
second- and third-order PC expansions (+), and between predictions obtained using the second-order spectral and
second-order NISP/GH predictions (×). In all cases, NKL = 4.

modal solutions are very small, indicating a very good agreement between the predictions.
The same analysis was repeated with third-order PC expansions (not shown) and revealed
similar trends. This further supports earlier claims that for the present conditions NKL = 4
is sufficient for adequate representation of the stochastic boundary conditions.

Figure 21 shows the L2 norm of the differences between the second-order and third-
order intrusive predictions and between second-order intrusive and second-order NISP/GH
results. In all cases, we use NKL = 4 and L2 norms are shown for all 14 modes in the second-
order PC expansion. The results indicate that for all modes the L2 norms are small, with
magnitudes falling below 10−3. In addition, the differences between second-order NISP and
intrusive predictions are comparable to corresponding deviations obtained using intrusive
spectral computations with NO = 2 and 3. Thus, the deviations between the NISP/GH and
intrusive spectral predictions are of the same order as the spectral trunction errors in the
latter approach.

8.2. Latin Hypercube Sampling

As mentioned earlier, a Latin hypercube sampling approach is also applied to determine
PC mode distributions. LHS is a stratified sampling technique where the random variable
distributions are divided into equal probability intervals, and events are formed by randomly
selecting variables within each of these intervals [32]. LHS typically requires fewer samples
than simple pseudo-random sampling to reach the same degree of convergence, and a
uniform sampling of phase space is assured within the limits of the sample size. In the
computations, the DAKOTA toolkit [37–39] is used to generate the necessary samples of
the uncorrelated Gaussian variables appearing in the KL expansion. Individual realizations
are then projected onto the PC basis to determine the mode distributions.

NISP/LHS computations are performed for a case with NKL = 6, Lc = 1, and σθ =
0.25. The sampling tools in DAKOTA were used to generate a six-dimensional array of
uncorrelated normalized Gaussians. The convergence of the mode amplitudes and the mean
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FIG. 22. Maximum standard deviation of temperature, u-velocity, and v-velocity over the computational
domain plotted vs the sample size. Note that the velocity standard deviations are scaled, as indicated in the legend.

Nusselt number were monitored as the number of realizations increased. An example of the
convergence diagnostics is given in Fig. 22, which shows the maximum standard deviation
for temperature and velocity in the entire domain as a function of the sample size. For the
present set of conditions, a sample of size of 4000 was deemed sufficient for the analysis,
even though statistics are evidently not fully converged, as can be appreciated from the figure.

In the following, we discuss results obtained from NISP/LHS computations in light of
the aforementioned NISP/GH results and the earlier “intrusive” spectral results. The spatial
distributions of PC modes of order ≤2 obtained using NISP/LHS (not shown) were first
compared with corresponding predictions obtained with second- and third-order intrusive
computations. The comparison reveals an excellent agreement for the mean and first-order
modes but noticeable quantitative and qualitative differences do occur in the second-order
modes. We briefly illustrate these differences by plotting in Fig. 23 the L2 norm of the
differences between (i) the NISP/LHS results and the second-order intrusive predictions, and
(ii) the NISP/LHS results and third-order intrusive predictions; the L2 norm of differences
between second- and third-order spectral predictions are also shown for comparison. As
observed earlier, the second- and third-order predictions are in excellent agreement with
each other, with L2 norms falling below 10−3. The differences between the NISP/LHS
and spectral predictions are also small, but the corresponding L2 norms are about an order
of magnitude larger than those of differences between spectral predictions. It can also be
observed that the L2 norms of differences between the NISP/LHS and intrusive predictions
are nearly the same for both second-order and third-order spectral expansions. This indicates
that the differences between NISP/LHS and spectral results are strongly affected by the
sampling errors in the NISP/LHS approach and that, although still small, these errors are
substantially larger than spectral truncation errors.
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FIG. 23. L2 norm of differences in temperature modes obtained with intrusive spectral predictions using
second- and third-order PC expansions (+), intrusive second-order and NISP/LHS with 4000 realizations (×),
and intrusive third-order and NISP/LHS with 4000 realizations (�). In all cases, NKL = 6, and the comparison is
restricted to second-order modes.

Additional insight into the convergence of the NISP/LHS computations can be gained
from Fig. 24, which shows the L2 norm of the differences in mode distributions between
the NISP/LHS and second-order intrusive results, as a function of the sample size. Plotted
in Fig. 24a are L2 norms for the mean and first-order modes; results for modes 7–13 are
shown in Fig. 24b. Generally, the difference between NISP/LHS and spectral predictions
diminishes quickly, but a residual difference remains for all modes as the sample size
increases. The difference decays quicker for the mean and the first-order modes (Fig. 24a),
than for modes 7–13 (Fig. 24b). As can be observed in Fig. 23, the differences between
NISP/LHS and intrusive spectral predictions are such that L2 norms corresponding to the
mean and first-order modes are comparable to or smaller than those corresponding to some
of the second-order modes. Since the latter are significantly weaker than the former, this
indicates that the NISP/LHS predictions of the higher order modes have large relative errors
and are not well converged. This also shows that the sampling errors in NISP/LHS are behind
the observed differences in the distributions of second-order modes.

9. UNCERTAINTY QUANTIFICATION

We conclude this study with a quantitative analysis of the effects of the stochastic bound-
ary conditions on heat transfer statistics within the cavity. We rely on spectral computations
using NKL = 6, NO = 2, and a 140 × 100 computational grid. Results are obtained for
three different correlation lengths and standard deviations, namely, Lc = 0.5, 1, and 2 and
σθ = 0.125, 0.25, and 0.5.

Computed values of Nu and σ(Nu) are reported in Tables V and VI, respectively. Table V
provides the mean Nusselt number along with the difference Nu − Nu0, where Nu0 denotes
the Nusselt number corresponding to the deterministic prediction with θc = −1/2. The
results show that Nu is larger than Nu0. For fixed correlation length, Nu − Nu0 increases
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FIG. 24. L2 norm of differences in temperature modes obtained with second-order intrusive and NISP/LHS
predictions for different sample size: (a) modes 0–6, (b) modes 7–13. In both approaches, NKL = 6, Lc = 1, and
σθ = 0.25.

approximately as σ 2
θ . In contrast, Nu exhibits as weaker dependence on Lc. This is not

surprising since, in the range considered, the eigenvalues λi of KL modes vary slowly with
the correlation length.

Unlike Nu, for fixed Lc the standard deviation σ(Nu) exhibits an approximately linear
dependence on σθ , as shown in Table VI. Furthermore, compared with the mean, σ(Nu)

exhibits a more pronounced dependence on Lc. This trend is consistent with variations of
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TABLE V

Mean Nusselt Number for Different Values of Lc

and σθ with NKL = 6 and NO = 2

σθ

Lc 0.125 0.25 0.5

Nu
0.5 8.902 8.967 9.228
1 8.904 8.974 9.268
2 8.905 8.977 9.293

Nu − Nu0

0.5 0.021 0.086 0.347
1 0.023 0.093 0.387
2 0.024 0.096 0.412

the KL mode amplitudes with the correlation length. As Lc increases, the magnitude of the
first KL modes increases, and since these modes have a dominant impact on the uncertainty,
so does σ(Nu).

Figure 25 depicts probability density functions (PDFs) of the Nusselt number computed
from the spectral solution. Figure 25a shows that the most likely value of Nu is not signif-
icantly affected by σθ , showing a slight decrease as σθ increases. On the other hand, the
skewness of the PDF increases with σθ . In particular, for σθ = 0.5, one observes a flatter
tail at high Nu values than for the lower values. These trends are consistent with earlier
results in Table V, which show that Nu − Nu0 increases substantially as σθ increases.

The effect of Lc on the PDF of the Nusselt number is depicted in Fig. 25b for fixed
σθ = 0.5. Consistent with the results of Table VI the PDF becomes wider as Lc increases.
Besides this trend, Lc appears to have a weak direct influence on the shape of the PDF.

Finally, we note that at σθ = 0.5 the PDF can extend into the negative Nu range. This
indicates that in extreme situations, the “mean” temperature on the right vertical wall may
exceed the constant value on the left vertical wall, leading to a reversal of the circulation
within the cavity and in the wall heat transfer. While such extremes have low probability
and consequently make a small contribution to low-order statistics, they demonstrate the
capability of the present method of treating situations with large uncertainty. To illustrate
these large changes, we plot in Fig. 26 the velocity profiles across the cavity for fixed
Lc = 1 and three different standard deviations, σθ = 0.125, 0.25, and 0.5. The length of
the “uncertainty” bars is proportional to 6 times the local standard deviation. Clearly, the

TABLE VI

Standard Deviation of the Nusselt Number for Different

Values of Lc and σθ with NKL = 6 and NO = 2

σ(Nu)

Lc σθ = 0.125 σθ = 0.25 σθ = 0.5

0.5 1.097 2.186 4.334
1 1.236 2.463 4.859
2 1.322 2.634 5.178
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FIG. 25. PDFs of the Nusselt number computed from the spectral simulations using NKL = 6 and NO = 2:
(a) Lc = 1 and σθ = 0.125, 0.25, and 0.5; (b) σθ = 0.5 and Lc = 0.5, 1, and 2.

FIG. 26. Mean velocity profiles across the cavity for σθ = 0.125 (left), 0.25 (center), and 0.5 (right). The
error bars correspond to 6 times the local standard deviation. The same scaling is used for all three plots. Spectral
results with Lc = 1, NKL = 6, and NO = 2 are used.
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uncertainty bars increase as σθ increases. In particular, for σθ = 0.5 the uncertainty bars
suggest that events with upward velocity near the cold wall become probable. In contrast,
one observes that the mean flow field is not strongly affected by σθ .

10. CONCLUSIONS

In this paper, the SPM [1] has been generalized to account for stochastic input data
generated by a stochastic process. The Karhunen–Loève expansion is used to represent
the stochastic input data. The dependence of the solution process on the random data is
expressed in terms of the polynomial chaos system and the coefficients of the solution are
determined using a weighted residual approach. The resulting stochastic formulation is in-
corporated into a finite-difference projection method, which results in an efficient stochastic
solver.

The properties of the stochastic solver are analyzed in light of computed results for natural
convection within a closed square cavity under stochastic temperature boundary conditions.
In particular, the setup is used to examine the convergence properties of the spectral un-
certainty representation scheme in terms of the number of KL modes and the order of the
PC expansion. Computations are performed for a steady flow regime with Rayleigh num-
ber of 106. For the selected conditions, the results indicate that the spectral representation
converges rapidly, providing accurate results for a second-order expansion using as few as
four KL modes. Numerical tests indicate that the CPU cost of the stochastic computations
is essentially proportional to the number of modes used in the spectral representration, thus
highlighting the efficiency of the stochastic model.

To verify the spectral predictions, stand-alone deterministic computations are performed
and are used in conjunction with “nonintrusive” spectral projection approaches. Two variants
of the NISP approach are implemented, one based on high-order Gauss–Hermite integra-
tion and the other on a Latin hypercube sampling strategy. Results obtained using Gauss
quadrature are in excellent agreement with the spectral predictions, showing very small
differences that are of the order of the spectral truncation errors. Predictions obtained using
the Latin hypercube sampling scheme are also in agreement with the spectral predictions
but exhibit differences that are an order of magnitude higher than those obtained using
Gauss–Hermite quadrature. The verification study underscores the efficiency of the spec-
tral computations, as the number of indepedent realizations needed to adequately represent
the stochastic process is substatially higher than the corresponding number of PC modes.
The analysis also shows that the nonintrusive approach based on Gauss–Hermite quadrature
can be significantly more attractive than that using Latin hypercube sampling, at least for
problems with a moderate number of stochastic dimensions.

The computations are used to quantify the effects of stochastic temperature conditions
on the global heat transfer characteristics within the cavity. The results indicate that the
mean Nusselt number, Nu, is generally larger than Nu0, the Nusselt number corresponding
to the mean (uniform) temperature profile. In particular, the difference Nu − Nu0 is found
to increase quadratically with σθ , the standard deviation of the stochastic temperature pro-
file, but shows a weak dependence on the correlation length Lc. Meanwhile, the standard
deviation of the Nusselt number exhibits an approximately linear dependence on σθ and a
more pronounced dependence on Lc than the mean Nusselt number.

So far, implementations of SPM have been restricted to flow conditions having relatively
simple physical models, involving quadratic nonlinearities only. In other situations, more
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complex physical models may arise that involve higher order nonlinearities. These result
in additional computational challenges for the present approach, particularly regarding the
implementation of the Galerkin scheme. Extensions that address these challenges in the
context of chemically reacting flows are currently being developed.

APPENDIX

A first-order expansion gives a spectral basis involving a set of P + 1 = NKL + 1 or-
thogonal polynomials:


0 = 1, 
i = ξi for i = 1, . . . , NKL = P. (39)

The governing equations for the zeroth-order velocity and temperature modes are

∂u0

∂t
+

NKL∑
i=0

ui · ∇ui = −∇p0 + Pr√
Ra

∇2u0, (40)

∂θ0

∂t
+

NKL∑
i=0

∇ · (uiθi ) = 1√
Ra

∇2θ0. (41)

For k = 1, . . . , NKL the governing equations can be expressed as

∂uk

∂t
+ u0∇uk + uk∇u0 = −∇pk + Pr√

Ra
∇2uk, (42)

∂θk

∂t
+ ∇ · (u0θk + ukθ0) = 1√

Ra
∇2θk . (43)

Meanwhile, continuity gives

∇ · uk = 0, k = 0, . . . , NKL. (44)

The velocity boundary conditions are given by

uk(x, t) = 0 ∀x ∈ ∂�, ∀t and k = 0, . . . . , NKL, (45)

while the scaled temperature boundary conditions are

θ0(x = 0, y) = 1/2, θ0(x = 1, y) = −1/2, (46)

θk(x = 0, y) = 0, θk(x = 1, y) =
√

λk fk(y) for k = 1, . . . . , NKL, (47)

and

∂θk

∂y
= 0 for y = 0, 1 and k = 0, . . . . , NKL. (48)

The first-order PC expansion thus leads to a set of NKL + 1 coupled momentum and heat
equations and a set of NKL + 1 decoupled divergence constraints.
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